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Magnetic field chaos in the Sherrington-Kirkpatrick model

Alain Billoire and Barbara Coluzzi
Service de Physique The´orique CEA-Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France

~Received 24 October 2002; published 17 March 2003!

We study the Sherrington-Kirkpatrick model, both above and below the de Almeida-Thouless line, by using
a modified version of the Parallel Tempering algorithm in which the system is allowed to move between
different values of the magnetic fieldh. The behavior of the probability distribution of the overlap between two
replicas at different values of the magnetic fieldh0 andh1 gives clear evidence for the presence of magnetic
field chaos already for moderate system sizes, in contrast to the case of temperature chaos, which is not visible
on system sizes that can currently be thermalized.

DOI: 10.1103/PhysRevE.67.036108 PACS number~s!: 02.60.2x, 75.10.Nr, 75.40.Mg
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I. INTRODUCTION

The Sherrington-Kirkpatrick~SK! model was introduced
quite a long time ago@1# as a mean-field model for spi
glasses. Its proposed analytical solution@2# displays intrigu-
ing features such as an infinite number of pure states in
glassy phase, described by an order parameter, which is
nontrivial probability distribution of the overlap between tw
states,P(q). After more than 20 yr this solution is still th
subject of works aiming at establishing it in full mathema
cal rigor @3,4#, whereas long standing open issues conc
the study of the corrections to the mean-field approximat
below the upper critical dimension@5# and the very applica-
bility of the mean-field picture to short range realistic sp
glasses@6#.

An interesting question concerns the way in which t
states reorganize themselves when the system is subject
a small perturbationdp of an external parameter, in particu
lar, the temperatureT or the magnetic fieldh. There is the
intriguing possibility ofp chaos, namely, the states atp and
p1dp are as different as possible in the thermodynam
limit.

The possible presence of temperature chaos in the SK
related models is an old subject of investigations@7–10# that
recently received a lot of attention both analytically and n
merically @11–16#. From a very recent analytical comput
tion @17# it turns out to be present, but to be of the nin
order in perturbation theory, a very weak effect, extrem
difficult to be numerically observed on the system sizes
is currently able to thermalize.

The aim of this paper is to investigate the appearanc
chaos with increasing system sizes~a question that cannot b
addressed by the existing analytical techniques that are
stricted to the asymptoticN→` regime!, in a case where
chaos is strong, namely, the case of magnetic field ch
The presence of magnetic field chaos was predicted alre
20 years ago@18# ~see also@7,10#!. From the numerical poin
of view, it was observed in a previous work@9# from a study
of the behavior of the second moment of the probabi
distribution of the overlapPh0 ,h1

(q) between replicas ath0

50 andh1Þ0. This pioneering paper can, however, be cr
cized, since many data points are on the wrong side of th
Almeida-Thouless~AT! line @19#. We will revisit the problem
1063-651X/2003/67~3!/036108~8!/$20.00 67 0361
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by looking ~in the SG phase! at the distributionPh0 ,h1
(q)

itself, a quantity whose interpretation is simpler than the m
ments.

More in detail, in terms of the probability distribution o
the overlap between two replicas at different values of
external parameterh0 and h15h01dh, chaos has a very
clean signature. Taking for simplicity the caseh050, for
small volumes,P0,dh(q) has two peaks, and is very similar t
P0,0(q) on the same volume. As the volume grows, a pe
develops around the minimal value of the overlapqm50, in
such a way that for very large volumesP0,0(q)'d(q). In the
temperature chaos case, this chaotic peak is hardly vis
with current computers and algorithms. Our aim is to det
mine if and how this ‘‘chaos peak’’ scenario takes place
the case ofh chaos, which is believed to be much strong
thanT chaos.

To this aim, we perform numerical simulations of the S
model atT50.6Tc , both above and below the AT line, b
using a modified version of the Parallel Tempering~PT! al-
gorithm @20,21# in which the system is allowed to mov
between differenth values at fixed temperature.

II. MODEL AND OBSERVABLES

The Sherrington-Kirkpatrick spin glass model@22,23# is
described by the Hamiltonian

HJ5 (
1< i , j <N

Ji j s is j2h (
1< i<N

s i , ~1!

wheres i561 are Ising spins, the sum runs over all pairs
spins, andJi j are quenched identically distributed indepe
dent random variables with mean valueJi j̄ 50 and variance
1/N. We takeJi j 56N21/2.

In order to measure the probability distribution of th
overlapP(q) one usually considers two independent replic
$s i% and $t i% evolving contemporaneously and indepe
dently ~at the same temperature and at the same value o
magnetic field!:

Q5
1

N (
i 51

N

s it i , ~2!
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P~q![PJ~q!̄[^d~q2Q!&̄, ~3!

where the thermal average^•& corresponds to the average over the Monte Carlo time in the simulation, whereas (• )̄ stands for
the average over theJi j realizations. This is the order parameter in the glassy phase, which in the thermodynamic limit b
as

P~q!5H d~q2qEA!, uhu.hAT~T!

xmd~q2qm!1 P̃~q!1xMd~q2qEA!, 0,uhu,hAT~T!

1
2 @ P̃~q!1 P̃~2q!#1 1

2 xM@d~q2qEA!1d~q1qEA!#, h50,T,Tc ,

~4!
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wherehAT(T) is the critical value of the magnetic field sig
naling the AT line, withhAT(T);(4/3)1/2(Tc2T)3/2 for T
→Tc

2 (Tc51 in this model! @19#. In the glassy phase, th
stable solution corresponds to a full replica symmetry bre
ing ~FRSB!, i.e., to a nontrivialP(q) with a continuous dis-
tribution P̃(q) between twod functions at valuesqEA and
qm , respectively. ForT→Tc

2 , one finds thatxm}qm}h2/3,
(qEA2qm)}(xM2xm)}@hAT(T)2h#. Note that ath50 the
function P(q) is symmetric, reflecting the symmetry of th
system for$s i%→$2s i%, and thed function in qm disap-
pears.

The interesting quantity to study when looking for cha
is the probability distribution of the overlap between tw
replicas that evolve at different values of the magnetic fie
h0 andh15h01dh, definable as

Ph0 ,h1
~q!5^d~q2Qh0 ,h1

!&. ~5!

It is expected to become ad function in the thermodynamic
limit, where, in the presence of chaos, states are as diffe
as possible and accordingly their mutual overlap approac
the minimum possible value, i.e.,qm(h0) ~which is zero for
h050). This happens certainly in theN→` limit as soon as
the condition (h12h0)2N@1 is verified@18#.

In finite dimensions, one can define the overlap corre
tion function Ch0 ,h1

(ur i2r j u)5^s is j&^t it j&, which decays
exponentially with a correlation length that was evaluated~in
d.8, i.e., above the upper critical dimension of the mod!
@7# to be jh050,h1

}h1
22/3 and jh0Þ0,h15h01dh

}h0
21/6(dh)21/2, respectively.

Dimensional ratios of momenta, such as

A2n~h0 ,h1 ,T!

5
^~q2^q&h0 ,h1!2n&h0 ,h1

A^~q2^q&h0 ,h0!2n&h0 ,h0^~q2^q&h
1

,h
1
!2n&h

1
,h

1

,

~6!

B2n~h0 ,h1 ,T!5
^~q2^q&h0 ,h1

!2n&h0 ,h1

^~q2^q&h0 ,h0
!2n&h0 ,h0

, ~7!
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have been introduced in order to look for chaos in Ref.@9#,
where it was argued that they should scale asf̃ (Nh1

8/3) for
h050 and should approach zero forN→`, namely, there is
magnetic field chaos.

The finite size corrections to the asymptotic behavior
Ph0 ,h1

(q) were computed in Ref.@10# by considering two
replicas, at different values of the magnetic field, constrain

FIG. 1. In ~a! we plot the disorder averaged probability distr
bution of the magnetizationP(m) at 21 different centralh values of
the set~i.e., fromh520.25 toh50.25) for the largest considere
system sizesN51024. In ~b! we presentPJ(m) at h50 for a
two-peak sample forN51024 again. In this last case the errors a
roughly evaluated as the difference between the values measur
the second quarter and in the second half of the run.
8-2
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FIG. 2. The probability distribution of the overlapP(q) between two replicas evolving ath50.0,0.1,0.2, and 0.3, respectively, for th
considered system sizes.
gy

y
g

T
in
to

iv

a

igh-

of
w-
p-
to have a fixed overlapq. The constraint causes a free-ener
excess for qÞqm given by D f 5 f (q5qm1dq)2 f (q
5qm), with

D f 55 S 2187

32 D 1/3dq2h1
8/3

qEA
, h050

dq2h0dh

A2
, h0Þ0,dh5uh12h0u!h0 .

~8!

Correspondingly, one hasPh0 ,h1
(q)}exp(2NDf), i.e., a

Gaussian with variancêq2&0,h1
}(Nh1

8/3)21 for h050, in
agreement with the above scaling law.

III. PARALLEL TEMPERING IN MAGNETIC FIELD

The PT or Multiple Markov Chain Method is a widel
used numerical algorithm particularly efficient for simulatin
~some! systems with a corrugated free-energy landscape.
basic idea is that the system at equilibrium, instead of be
trapped in a single low temperature valley is allowed
move at higher temperatures where the landscape is tr
and to return at lowT in a different valley. This can be
03610
he
g

ial

achieved by consideringn replicas of the system, each at
different temperature in a given set~of temperatures!, and by
allowing exchanges of temperatures between nearest ne
bor replicas with the usual Monte Carlo probability.

Here we consider a set of replicas at different values
the magnetic field, both above and below the AT line, allo
ing exchange ofh values between the nearest neighbor re
licas with the appropriate probability

P~$h1 ,$s1%;h2 ,$s2%%→$h2 ,$s1%;h1 ,$s2%%!

5H 1, DHtot.0

ebDHtot, DHtot,0,
~9!

where

Htot5 (
a51

n

(
1< i , j <N

Ji j s i
as j

a2hp(a) (
1< i<N

s i
a ~10!

and therefore

DHtot52~h12h2!S (
i 51

N

s i
12(

i 51

N

s i
2D . ~11!
8-3
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FIG. 3. The probability distribution of the overlapPh0 ,h1
(q) between replicas evolving at different magnetic field values, withh0

50.0 andh150.1,0.15,0.2, and 0.3, respectively, for the considered system sizes.
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In principle thish-PT method should be efficient for therma
ization, like the usualT-PT method, since the landscape
trivial above the AT line. It is, moreover, a well-suite
method for the kind of numerical study we are interested
since one can easily measurePh0 ,h1

(q) by considering two
or more independent sets of replicas. However, as we
going to discuss in detail, we find that its efficiency rapid
decreases while simulating large system sizes.

We studied the casesN564,256, and 1024, taking a set o
n549 equally spaced magnetic field values betweenh5
6uhmaxu560.6 at the temperatureT50.6, where the AT
line occurs at the critical valuehAT(T50.6).0.382@24#.

We alternate one sweep of each replica with the us
Metropolis algorithm and one sweep with the PT algorith

The probability of two replicas to exchange their ma
netic fields is related to the overlap between the correspo
ing histograms of the magnetizationP(m) that we check to
be large enough~see Fig. 1! even forN51024. However,
some single samplesPJ(m) display two peaks at6m0Þ0
whenh50 ~see Fig. 1!. As a result, the replicas can separa
into two distinct subsets, one evolving in the phase sp
with positive and the other with negative magnetic field v
ues@the probability of a replica that arrive ath50 with m
.2m0,0 to move at a positivedh value is of order
03610
,
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.
-
d-

e
-

exp(2bm0dhN), much smaller than the usua
exp(2bxdh2N)]. This happens for someN51024 samples.
In order to avoid such a problem, we add a possible glo
movement, allowing a replica ath50 to reverse the sign o
all its spins with probability 1/2.

Each run is divided into two equal parts and we che
thermalization by comparing the data obtained in the sec
part with that of the second quarter, looking in particular
the behavior ofPh0 ,h1

(q). We perform 50.000150.000,

100.0001100.000, and 300.0001300.000h-PT steps forN
564, 256, and 1024, respectively. In theN51024 case we
also performed independent runs with temperature PT fo
disorder samples ath50 and h50.3, obtaining indistin-
guishable results forP(q).

We simulated four sets of replicas evolving simult
neously and independently~i.e., 49345196 replicas!. Data
are averaged over 256 disorder configurations for each
tem size, and statistical errors are evaluated from sample
sample fluctuations by using the jackknife method. The p
gram was multispin coded with 64 different sites of t
system in the same computer word and the whole sim
tions took about 5500 CPU hours~in the largest part used fo
N51024), i.e., about one week when running over 32 p
8-4
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FIG. 4. On the top, the behavior ofB2(h0 ,h1) for h050.0 as a function ofh1 ~left! and as a function of the scaling variable 1/(Nh1
8/3)

compared with the asymptotic behavior}1/(Nh1
8/3) for 1/(Nh1

8/3)!1 ~log-log plot on the right!. On the bottom, the behavior ofPh0 ,h1
(0)

for h050.0 as a function ofh1 ~left! and as a function ofNh1
8/3 compared with the asymptotic behavior}ANh1

8/3 for Nh1
8/3@1 ~log-log plot

on the right!.
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cessors on the COMPAQ SC270~the program can be easil
parallelized by running different samples over different p
cessors!.

In the N564 and 256 cases the algorithm works qu
nicely, as can be seen from the number of tunnelin
namely, the number of times that each replica moves fr
one extremum of the set~of h values! to the other and back
which is aboutN515–20~in the second half of the run!. On
the other hand, already forN51024, despite the 300.000 P
steps of the second part of the run, this number drops tN
55 –6 and in nearly one-fourth of the samples there is
least one replica, which is unable to go fromhmax to hmin
and back, in the whole interval considered~in a few cases
most replicas never did it!.

In the case of temperature PT, the corresponding~aver-
age! number of tunnelings are 3780, 1590, and 455, resp
tively ~in the runs of 400.000 steps starting from equilibriu
configurations, with a set of 38 temperatures betweenTmax
51.325 andTmin50.4 ath50.3 for N564,256, and 1024).
Clearly the number of tunnelings decreases much faster
the system size in theh-PT case. This is presumably linke
to the early appearance of magnetic field chaos. As we
discuss in detail in the following section,Ph0 ,h1

(q) starts to

approach ad function, i.e., its thermodynamic limit behavio
03610
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already for magnetic field differences of order 0.15, forN
51024. This means that the corresponding phase space
very different and that an algorithm based on global mov
ments between different values ofh cannot work well. Simi-
larly, the efficiency of temperature PT should drop down
extremely large systems due to temperature chaos fin
coming out.

The bottom line is thatN51024 is the largest size we ar
able to efficiently thermalize atT50.6 by using theh-PT
algorithm, to be compared with the four times largerN
54096 that can be thermalized down toT50.4 with the
temperature PT algorithm at zero magnetic field.

IV. RESULTS AND DISCUSSION

A. On the finite size corrections to theP„q…

The functionP(q) is shown in Fig. 2 forh50.0,0.1,0.2,
and 0.3. Ath50.0 it agrees nicely with the expected beha
ior, whereas it is strongly affected by the finite size effe
for nonzero magnetic field. This is in qualitative agreeme
with the theoretical finding@25# that the finite size correc
tions of P(q) are one order of magnitude larger in theq
,qm region than in theq.qEA region, namely,
8-5
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FIG. 5. The probability distribution of the overlapPh0 ,h1
(q) between two replicas evolving at different magnetic field values, withh0

50.1 andh150.15,0.2,0.25, and 0.3, respectively, for the considered system sizes.
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ln„P~q!…

N
5H 2lm~qm2q!3, q!qm

2lEA~q2qEA!3, q@qEA ,
~12!

with lm!lEA . The behavior forq.qEA was tested~for h
50) in Refs.@26# and @27#.

Here we find that for the considered sizesP(q) has a
visible tail in theq,0 region forh as large as 0.3. More
over, the peak that should correspond to the thermodyna
limit d(q2qm) is not visible and the expecte
exp@2Nlm(qm2q)3# behavior is swamped by the remini
cence of theq52qEA peak, still clearly visible ath50.1.
For the increasing magnetic fields the weight of theq5qm
peak should increase~and the reminiscence of theq5
2qEA peak fade away! but qm approachesqEA , making dif-
ficult to distinguish between the two peaks. These kinds
strong finite size effects in a magnetic field were alrea
observed in finite dimensional spin glasses@28,29#. Larger
system sizes and/or lower temperatures would be neede
order to see the correct large volume behavior.

On the other hand, we note that in our dataqEA @defined
as the location of the maximum ofP(q)] is practically inde-
pendent of the field, as predicted by the Parisi theory~in the
infinite volume limit!. We obtainqEA.0.53 for N51024,
where a recent analytical computation@24# gives the
asymptotic valueqEA.0.505~independent ofh).
03610
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B. On magnetic field chaos

In order to find evidences for magnetic field chaos
analyze the behavior ofPh0 ,h1

(q). We first consider the cas

h050.0 @thenP0,h1
(q) is still symmetric forq→2q] and let

h1 take the values 0.1, 0.15, 0.2, and 0.3~see Fig. 3!. Already
for h150.15 we find clear evidences for a chaotic behav
when looking at theN51024 data. This is very differen
from the situation one finds when looking for temperatu
chaos@11#, wherePT0 ,T1

(q'0) does not show a clear pea

corresponding to the thermodynamic limitd(q) for (T1
2T0) as large as 0.2 and size as large asN54096. It is
remarkable that the appearance of the magnetic field ch
with increasing system sizes is a very sudden phenome
chaos is elusive forN5256 and blatant forN51024.

On the other hand, to get a nearly Gaussian behavior
have to consider at leastN51024 andh1 values as large as
0.3, but the variance is more than an order of magnitu
larger than that predicted by Eq.~8!. Our data suggest tha
the support ofP0,h shrinks to 0 asN grows, and the chaotic
q'0 peak dominates more and more the distribution.

Moreover, we find thatA2n(h0 ,h1) and B2n(h0 ,h1),
which decrease with increasing sizes as soon ash1.0, are in
agreement with the expected scaling law@9#, i.e., f̃ (Nh1

8/3).
We consider, in particular,
8-6
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B2~h0 ,h1 ,T!5
^~q2^q&h0 ,h1

!2&h0 ,h1

^~q2^q&h0 ,h0
!2&h0 ,h0

, ~13!

which is plotted in scaling form in Fig. 4. In the limi
1/(Nh1

8/3)!1 the scaling function approaches the asympto

regimef̃ (Nh1
8/3)}1/(Nh1

8/3) in qualitative agreement with th
first-order perturbative result~8!. This shows that the
asymptotic regime is indeed approached in our data, and
we can safely deduce that limN→`B2(0,h1Þ0,T)50.

We conclude the analysis of theh050 case by looking at
Ph0 ,h1

(0) as a function ofh1. It increases when we conside
increasing sizes~apart from the very smallh values, where
there are clearly strong finite size effects! and scales roughly
as f̃ (Nh1

8/3) ~see Fig. 4! with f̃ (Nh1
8/3) approaching the ex

pected behavior}ANh1
8/3 for Nh1

8/3@1. We also note tha
though we have plotted data only forh1<0.4, these scaling
laws appear satisfied also when we include data corresp
ing to h1 values on the other side of the AT line.

Next we considerh050.1, h150.15,0.2,0.25, and 0.3
~see Fig. 5!. The Ph0 ,h1

(q) is still expected to approach ad
function in the thermodynamic limit, now centered inqm

@qm(h50.1)50.21 independent ofT from a recent analytica
study@24##. However, we have already noted that the peak
qm is not evident in our data for~the usual! P(q) and corre-
spondingly there is no clear evidence for chaotic behavio
Ph0Þ0,h1

(q). Also for the largest size considered, i.e.,N

51024, though a small second peak inq'0.05 is appearing
the dominant contribution is still coming from the remini
cence of the peak inqEA , whose mean value and height a
slowly decreasing for increasingh1. As a matter of fact,
when going to the other side of the AT line, i.e.,h1>0.4, it is
this peak that survives, becoming centered on a defini
lower q value (̂ q&h050.1,h150.6.0.18 for N51024, smaller

thanqm).
It is clear that one should look at largerN’s to get evi-

dences for the expected Gaussian shape}exp@2(q
2qm)2/2s th

2 # ~with 1/s th
2 5A2Nh0uh12h0u) in the spin glass

phase. Therefore, it is not surprising that a quantity such
B2(h0 ,h1) doesnot scale as a function ofN(h12h0). In the
case we are considering ofh050.1 a form B2; f̃ „N(h1
2h0)a

… still roughly works, with a.4. Nevertheless, the
data presented in Fig. 6 show that even forN51024 and
(h12h0).0.3 we are very far from an asymptotic regim
f̃ (x)}1/x. When looking at largerh0 , B2 definitely does not
scale, for instance, already ath050.2 we getB2(N51024)
.B2(N5256) in the whole interval 0.2,h1<0.4.

V. CONCLUSIONS

We performed numerical simulations of the SK model in
magnetic field at the temperatureT50.6 both in the glassy
phase and above the AT line. We used a modified versio
the PT algorithm in which the system is allowed to mo
between a chosen set of magnetic field values, an algor
well suited for our purpose. We found thatN51024 is the
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largest size one is able to efficiently thermalize with th
method and we argue that this is related to the appearanc
the magnetic field chaos at this scale.

The functionP(q) shows strong finite size corrections fo
h.0, with a long tail in theq,0 region that slowly disap-
pears for increasing sizes, whereas the peak correspondi
the thermodynamic limitd(q2qm) is not yet visible.

Our main result is on the behavior ofPh0 ,h1
(q), which in

the case ofh050.0 shows evidence for chaos already ath1
50.15 when we consider the still relatively small sizeN
51024. This is in variance with the situation one finds wh
looking for temperature chaos@11#, in agreement with the
very recent analytical finding@17# that the temperature chao
is a much weaker effect. The appearance of the third pea
q50 is accompanied by a shrinking of the support of t
distribution.

The expected scaling law@9# is well satisfied and, for
large Nh1

8/3, Ph050,h1
(q) approaches a Gaussian with va

ance}1/(Nh1
8/3), in qualitative agreement with the result o

a first-order perturbative computation@10#.
On the other hand, looking at the chaotic behavior

h0Þ0 we found ourselves to be still very far from the e
pected asymptotic regime. This is to be related to the p
ence of strong finite size effects observable also onP(q)
itself.

FIG. 6. The behavior ofB2(h0 ,h1) for h050.1 as a function of
h1 and as a function of 1/@N(h12h0)4# compared with the
asymptotic behavior}1/@N(h12h0)4# ~log-log plot!.
8-7
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